Оптимизация процесса обработки воды методом ультрафильтрации

А. П. АНДРИАНОВ, инж. (МГСУ); А. Г. ПЕРВОВ, д-р техн. наук (ГНЦ РФ НИИ ВОДГЕО)

Все больше внимания в настоящее время уделяется поиску новых перспективных методов очистки воды, более компактных, дешевых, простых в эксплуатации по сравнению с традиционными. К их числу относятся мембранные методы: ультрафильтрация и нанофильтрация.

Оба процесса имеют сходное аппаратурное оформление, но в технологическом плане имеются принципиальные различия. Если при эксплуатации нанофильтрационных установок накопившиеся в процессе работы на поверхности мембран осадки (задержанные из воды загрязнения) удаляются с помощью химических промывок (т. е. с применением реагентов), то при эксплуатации ультрафильтрационных мембран удаление загрязнений с поверхности мембран производится обратным током, как у фильтров с зернистой загрузкой. Поэтому безреагентная ультрафильтрация считается за рубежом технологией будущего [1; 2].

Ультрафильтрация – это мембранный процесс, занимающий промежуточное положение между нанофильтрацией и микрофильтрацией. Ультрафильтрационные мембраны имеют размер пор от 20 до 1000 Å (или 0,002–0,1 мкм) и позволяют задерживать тонкодисперсные и коллоидные примеси, макромолекулы (нижний предел молекулярной массы составляет несколько тысяч), водоросли, одноклеточные микроорганизмы, цисты, бактерии и вирусы. Таким образом, использование мембранной ультрафильтрации для очистки воды позволяет сохранить ее солевой состав и осуществить осветление и обеззараживание воды без применения химических веществ, что делает эту технологию перспективной с экологической и экономической точек зрения.

Технология обработки воды с помощью ультрафильтрационных мембран заключается в «тупиковой» фильтрации воды через мембрану без сброса концентрата. Такой режим работы по­зволяет сократить расход воды на собственные нужды станции очистки и уменьшить ее общее энергопотребление. Процесс фильтрования длится 20-60 мин, после чего следует обратная промывка мембраны. Для этого часть очищенной воды под давлением подается в фильтратный тракт в течение 20-60 с. В процессе обратной промывки вода уносит с поверхности мембран слой накопившихся загрязнений. На рис. 1 показаны устройство и схема работы ультрафильтрационных рулонных элементов.

Рис. 1. Ультрафильтрационный модуль

а - рабочий режим; б - режим промывки; 1 - исходная вода; 2 - фильтрат; 3 - рулонный элемент; 4 - сброс концентра­та; 5 - обратная промывка фильтратом

 

В процессе длительной работы производительность мембранных аппаратов постепенно уменьшается, так как на турбулизаторной сетке, на поверхности и на стенках пор мембран сорбируются различные вещества и отлагаются частички загрязнений, увеличивающие общее гидравлическое сопротивле­ние мембранных аппаратов. Для восстановления первоначальной производительности несколько раз в год проводится химическая промывка мембранных аппаратов специальными кислотными и щелочными реагентами для удаления накопленных загрязнений.

При конструировании систем очистки воды на основе метода ультрафильтрации основной задачей, встающей перед проектировщиком, является правильное определение продолжительности прямого фильтрования, а также частоты и интенсивности обратных промывок. Эти параметры зависят от качества исходной во­ды и определяются исходя из оп­тимальных соотношений производительности ультрафильтра­ционной установки и ее общего водопотребления [3]. Правильный выбор режима промывки обеспечивает эффективную работу установки, заключающуюся в длительном сохранении производительности и качества фильт­рата. Авторами на примере обез­железивания подземной воды была разработана методика поиска оптимальных параметров работы ультрафильтрационной установки.

Эффективность обратной про­мывки зависит от ее интенсивности (при неизменном давлении промывки можно оперировать длительностью обратной промывки) τ и интервала между про­мывками (продолжительность фильтроцикла) t. При заданном времени τ эффективность работы установки зависит от продолжительности t: чем меньше t, тем эффективнее проходит отмывка мембраны от загрязнений, но тем больше образуется промывной воды. Исследования по оптимизации процесса обратной промывки ставят целью определить такие значения τ и t для различного состава обрабатываемой воды, которые соответствуют наибольшему количеству очищенной воды, полученной в течение времени Т. Исследования проводились на модельных растворах хлорида железа (III) на ультрафильтрационных мембранах марки УАМ-150. На рис. 2 показано снижение производительности мем­бранного аппарата с течением времени для разных концентраций железа в исходной воде.

Рис. 2. Снижение производительности мембранных аппаратов во времени при различных концентрациях железа в исходной воде, мг/л

1 - 5; 2 - 10; 3 - 15; 4 - 20

 

Для определения оптимальных величин продолжительности фильтроцикла и промывки проводилось несколько серий экспериментов с различной продолжительностью обратной про­мывки. В каждой серии при фик­сированной длительности обратной промывки менялась продол­жительность фильтроцикла. Зависимости объема фильтрата и промывной воды от времени работы установки для одной серии экспериментов приведены на рис. 3 (продолжительность обратной промывки 30 с).

Поиск оптимальных соотношений длительности фильтроцикла и промывки производится по максимальной полезной производительности мембранного аппарата, которую можно определить как Vполезн = Vф - Vпр.. Сначала оптимальные точки находились отдельно для каждой продолжительности промывки. На рис. 4 показано определение оптимальной продолжительности фильтроцикла при длительности промывки 30 с. Затем полученные кривые зависимости полезного объема чистой воды от продолжительности фильтроцикла сводятся в один график (рис. 5), и по точкам максимумов этих кривых строится результирующая кривая, которая позволяет определить максимальное количество очищенной воды в зависимости от t и τ и соответственно найти оптимальную длительность обратной промывки. Эксперименты по приведенному алгоритму определения точки оптимума повторяются для различных концентраций железа в исходной воде.

Таким образом, полученные в результате проведенных экспериментов данные могут использоваться в качестве рекомендаций при разработке систем обез­железивания на основе мембран­ной ультрафильтрации.

Рис. 3. Зависимость объема фильтрата (сплошная линия) и промывной воды (пунктирная линия) от времени работы установки при длительности промывки 30 с

продолжительность фильтроцикла, мин: 1, 1¢ - 15; 2, 2¢ - 30; 3, 3¢ - 60


Рис. 4. Определение оптимальной продолжительности фильтроцикла при длительности обратной промывки 30 с

1 - Vф; 2 - Vполезн; 3 - Vпр


Помимо указанных выше параметров на эффективность работы мембранных аппаратов влияет величина давления: рабочего и обратной промывки. При определении точки оптимума не­обходимо учитывать не только полезную производительность, но и объемы исходной и сбрасываемой в канализацию воды, при этом вычисление оптимальных соотношений длительности промывки и фильтроцикла производится на основе экономических расчетов.

Рис. 5. Определение оптимальной продолжительности промывки для разной продолжительности фильтроцикла

продолжительность обратной промывки, с: 1 - 15; 2 - 30; 3 - 45; 4 - 60; пунктир - оптимум

 

В результате исследований разработаны технологические схемы и конструкции установок, предназначенных для обработки подземных вод с повышенным содержанием железа. В зависимости от состава исходной воды производится выбор той или иной модификации установок, отличающихся устройством аэ­рации и маркой используемых мембран. Вместе с удалением железа на установках обеззараживают воду без использования реагентов, удаляют сероводород и осветляют воду в случае выноса из скважины глинистых частиц.

Метод обезжелезивания воды с помощью ультрафильтрации рекомендуется применять при следующих показателях качества исходной воды: железо общее – не более 40 мг/л; щелочность – не более (1+Fe2+/28) мг-экв/л; рН – не менее 6 (водородный показатель воды после аэрации должен быть не менее 6,7-7); содержание Н2S – не более 5 мг/л; перманганатная окисляемость – не более 6-10 мг/л.

При содержании железа до 5 мг/л и сероводорода до 2 мг/л применяется схема с упрощенной аэрацией и фильтрованием на мембранах типа УАМ-500 и УАМ-1000. При содержании железа до 20-40 мг/л и сероводорода выше 2 мг/л используется аэрация эжектированием или барботированием и дополнительная упрощенная аэрация. При содержании в исходной воде трудноокисляемого железа, низких значениях рН и отсутствии растворенной углекислоты степень аэрации увеличивается. В зависимости от продолжитель­ности процесса окисления двухвалентного железа и расчетной производительности установки обезжелезивания назначается объем аэрационных сооружений.

При наличии в исходной воде грубодисперсных примесей и песка в начале  технологического тракта предусматривается сетчатый самопромывающийся фильтр с размером ячеек 100- 200 мкм. Внешний вид и принципиальная технологическая схема установки приведены на рис. 6 и 7. В зависимости от содержания железа  и мутности исходной воды потребление воды на собственные нужды станции составляет не более 3-5 %, удельная потребляемая мощность 1,5-2 кВт∙ч/м3.

Выводы

Рис. 7. Технологическая схема обезжелезивания подземных вод с использованием ультрафильтрации (при содержании железа в исходной воде не более 5 мг/л)

1 - регулирующая напорная емкость с реле давления; 2 - магнитный клапан на входе в установку; 3 - бак-аэратор; 4 - рабочий насос; 5 - блок рулонных ультрафильтрационных модулей; 6 - магнитные клапаны обратной промывки; 7 - напорный бак обратной промывки; 8 - бак-накопитель очищенной воды; 9 - сетевой насос; 10 - напорный сетевой бак с реле давления
 


Теоретически обоснован и разработан процесс очистки воды методом ультрафильтрации. Предложена методика расчета параметров эксплуатации систем ультрафильтрации, на основании которой в зависимости от состава очищаемой воды назначаются: величина рабочего давления, продолжительность фильтроцик­ла, время обратной промывки, процент расхода воды на собственные нужды станции. Разработанные рекомендации легли в основу создания систем ультрафильтрации, используемых НИИ ВОДГЕО для обезжелезивания воды и улучшения качества водопроводной воды на объектах водоснабжения.

Список литературы

  1. Первов А. Г., Мотовилова Н. Б., Андрианов А. П. Ультрафильтрация – технология будущего // Водоснабжение и сан. техника. 2001. № 9.
  2. Laine J.-M., Vial D., Mou­lart P. Status after 10 years of operation – overview of UF tech­nology today // Proc. of the Conf. on Membranes in Drinking and Industrial Water Production (Pa­ris, 3-6 October). - 2000. V. 1.
  3. Mores W. D., Bowman
    C. N., Davis R. H. Theoretical and experimental flux maximiza­tion by optimization of backpul­sing // J. Membr. Sci. 2000.
    № 165.

 

<<< назад

Цикл научно-практических семинаров 2012

ОАО «НИИ ВОДГЕО» приглашает руководящих специалистов «Водоканалов», работников промышленных...

ВТОРОЙ МЕЖДУНАРОДНЫЙ ФОРУМ «ЧИСТАЯ ВОДА – 2010»

Сотрудники ОАО «НИИ ВОДГЕО» приняли участие в работе Второго Международного форума «Чистая вода –...

МЕЖДУНАРОДНЫЙ ВОДНЫЙ ФОРУМ ЭКВАТЭК-2010

ОАО «НИИ ВОДГЕО» принял участие в Международном водном форуме ЭКВАТЭК-2010: 1-4 июня 2010 г., МВЦ...